Decentralized Wastewater Treatment Systems:

Processes, Design, Management, and Use

Webinar Series Sponsored by the Conservation Technology Information Center, US EPA, and Tetra Tech

Session 3

Decentralized Wastewater System Design: Part 1

Victor D'Amato, Tetra Tech

Decentralized Wastewater Design

- Part 1 Design Fundamentals
 - Planning and Design Basis
 - Wastewater Characterization
 - Preliminary/Primary Treatment
 - Soil-Based Treatment
 - Distribution Design for Soil Dispersal

Decentralized Wastewater Design

- Part 2 Advanced Design Topics
 - Pumping Systems
 - Clustered Collection and Treatment
 - Advanced Treatment
 - Repairs, Expansions, and Retrofits
 - Construction Management and Supervision
 - Operation and Maintenance

Planning and Design Basis

Planning Processes

- Preliminary Engineering Review (PER)
 - Requirement for USDA-RUS and other funding
 - RUS Bulletin 1780
 - Project planning area
 - Existing facilities
 - Need for project
 - Alternatives considered
 - Selection of alternative
 - Proposed project
 - Conclusions and recommendations
- Capital Improvement Plan (CIP)
 - Infrastructure/asset management planning medium-long term (1 yr, 5 yr, longer)

System Layout/Architecture

- Centralized systems
- Decentralized systems
 - Individual (onsite/onlot)
 - Cluster
- Distributed management: use and management of systems scaled to match context

System Components

- Collection/Conveyance (part 2)
 - Conventional (gravity/lift station)
 - STEP/STEG
 - Pressure Sewer
 - Vacuum Sewer

Treatment

- Preliminary/Primary (part 1)
- Secondary (part 2)
- Advanced/Tertiary (part 2)
- Product Management: Effluent, Residuals
 - Discharge vs. soil dispersal vs. reuse
 - Surface vs. subsurface dispersal
 - Gravity vs. pressure distribution

Key References

- State/local regulations
- 10-State Standards (http://10statesstandards.com/waterstandards.html)
- Wastewater Engineering, Metcalf and Eddy
- Small and Decentralized
 Wastewater Management Systems,
 Crites and Tchobanoglous
- Water Environment Federation Manuals of Practice (MOPs)
- EPA Manuals
 (http://www.epa.gov/nrmrl/pubs/625r00008/html/625 R00008.htm)
- Decentralized Water Resources Collaborative/WERF project products (http://www.ndwrcdp.org/)
- Unit converter

Research and Products from the

Decentralized Water Resources Collaborative

Decentralized systems offer an affordable, sustainable solution for the treatment of wastewater. Nearly \$16 million in research products are available from DWRC and the Water Environment Research Foundation on decentralized water and wastewater treatment. For help navigating this wealth of information, go to www.werf.org/decentralizedwater and cesss the resources below:

A short video tour introduces users to decentralized systems and provides a quick tour of how to access available research.

A Frequently Asked Questions guide highlights key issues and organizes topics by categories for quicker navigation to resources.

The DWRC Web site at www.decentralizedwater.org provides access to all 70+ products.

Wastewater Characterization

Wastewater Characterization

- Flow, Q = Volume/time (gal/day)
- Strength expressed in concentration, c (mg/l)
- Mass loading = Qc (lbs/day)
 - Most meaningful measure
 - Only used to size certain pretreatment units
 - Both flow and strength should be assessed in any system design
 - Flow and strength are functions of the facilities being served
- Mass loading calculation example
 - Q = 1,200 gpd
 - $c(BOD_5) = 300 mg/l$
 - BOD₅ loading = 1,200 gal/day X 300 mg/l X 3.9 l/gal X 2.2E-6 lbs/kg = 3.1 lbs/day

Wastewater Strength

- Domestic (from Metcalf and Eddy)
 - TSS = 120-400 mg/l
 - BOD5 = 110-350 mg/l
 - FOG = 50-100 mg/l
 - TN = 20-70 mg/l
 - TP = 4-12 mg/l
 - Others?
- Institutional (high N?)
- Commercial (high BOD, FOG?)
- Industrial (high metals, toxics?)
- Combinations
- Sampling raw wastewater, especially from stand-alone facilities is difficult (sample STE if possible)

Wastewater Strength

CFD for Septic Tank
Effluent BOD₅
Concentration – This
diagram shows, for
example, that ~70
percent of the STE
BOD₅ results reported in
the literature for singlesource domestic
systems are 200 mg/L
or less.

- Lowe, et al. (2007) http://www.ndwrcdp.org/research_project_04-DEC-1.asp
- Lesikar, et al. (2004) Food-service Establishments Wastewater
 Characterization and (2005) The Strength of Wastewater as
 Impacted by Restaurant Management Practices

Wastewater Flow

- What basis?
 - Peak day (gpd)
 - Peak month average (gpd)
 - Annual average (gpd)
 - Peak hour (gpm)
- Prescriptive: unit flow rates for different facilities
- Data-driven: measured flow rates from facility
 - e.g., average of three highest daily flows in peak month
- Estimating daily design flow can be tricky – make sure you get this right before proceeding!

TABLE NO. I				
TYPE OF ESTABLISHMENT	DAILY FLOW FOR DESIGN			
Airports	5 gal/passenger			
(Also R.R. stations, bus terminalsnot				
including food service facilities)	501/-1			
Barber Shops Bars, Cocktail Lounges (Not including	50 gal/chair			
food service)	20 gal/seat			
Beauty Shops (Style Shops)	125 gal/chair			
Bowling Lanes	50 gal/lane			
Businesses (other than those listed elsewhere in this table)	25 gal/employee			
Camps				
Construction or Work Camps	60 gal/person			
•	40 gal/person			
	(with chemical toilets)			
Summer Camps	60 gal/person			
Campgrounds With Comfort Station				
(Without water and sewer hookups)	100 gal/campsite			
Travel Trailer/Recreational Vehicle Park				
(With water and sewer hookups)	120 gal/space			
Churches (Not including a Kitchen, Food Service				
Facility, Day Care or Camp)	3 gal/seat			
Churches (With a Kitchen but, not including a Food				
Service Facility, Day Care, or Camp)	5 gal/seat			
Country Clubs	20 gal/member			
Day Care Facilities	15 gal/person			
Factories (Exclusive of industrial waste) Add for showers	25 gal/person/shift 10 gal/person/shift			
Food Service Facilities	to gar/person/smrt			
Restaurants	40 gal/seat or			
	40 gal/15 ft2 of			
	dining area, whichever is greater			
24-hour Restaurant	75 gal/seat			
Food Stands	-			
(1) Per 100 square feet of food stand floor space	50 gal			
(2) Add per food employee	25 gal			
Other Food Service Facilities	5 gal/meal			
Hospitals	300 gal/bed			
Marinas	10 gal/boat slip			
With bathhouse	30 gal/boat slip			
Meat Markets				
(1) Per 100 square feet of market floor space	50 gal			
(2) Add per market employee	25 gal			

TABLESIO I

Wastewater Flow

Example

- Summer camp w/250 campers, max., full-service cafeteria, no laundry
- State rules prescribe:
 - 30 gpd/camper
 - 60 gpd/camper with laundry and food service
 - 5 gal/meal served

Solution

- Prescribed unit flow = 30 gpd/camper + (5 g/meal)(3 meal/day-camper) = 45 gpd/camper
- Design daily flow = 250 campers x 45 gpd/camper = 11,250 gpd
- Peak month of June 2009 had three max. WW flows of 10,235, 13,794, and 9,650 gpd (average = 11,226 gpd)
- Retrofit fixtures and monitor

Wastewater Flow

Variability

- Hourly
 - Generally, the fewer facilities, the higher the peaking factor
- Daily schools, churches, businesses
 - May equalize over 7 days if flow varies across a normal week
- Weekly for variable use facilities, vacation rentals, etc.
 - Ensure that treatment processes can withstand variable loading or design to address
- Seasonal for vacation areas
 - Ensure that treatment processes can withstand long periods of inactivity

	Number People	Sewer Flow	Actual Sewer
	at Camp	Meter Readings	Per Day (gal)
6/7/2009	35		
6/8/2009	35	3765.04	
6/9/2009	35	3781.78	1674
6/10/2009	35	3811.84	3006
6/11/2009	35	3838.33	2649
6/12/2009	35	3880.33	4200
6/13/2009	35		
6/14/2009	188		
6/15/2009	188	3957.69	
6/16/2009	188	4060.04	10235
6/17/2009	188	4197.98	13794
6/18/2009	188	4294.48	9650
6/19/2009	188	4356.37	6189
6/20/2009	5	4379.61	2324
6/21/2009	172		
6/22/2009	172	4408.31	
6/23/2009	172	4454.3	4599
6/24/2009	172	4507.04	5274
6/25/2009	172	4537.95	3091
6/26/2009	5	4565.09	2714
6/27/2009	5		
6/28/2009	152		
6/29/2009	152	4615.38	
6/30/2009	152	4649.87	3449
7/1/2009	152	4681.75	3188
7/2/2009	152	4721.1	3935
7/3/2009	5	4743.48	2238
7/4/2009	5		
7/5/2009	208		
7/6/2009	208	4802.73	
7/7/2009	208	4852.44	4971

Preliminary/Primary Treatment

Preliminary/Primary Treatment

- Preliminary treatment
 - Processes that remove materials and objects that may cause O&M problems (e.g., rags, grit, sticks, grease)
- Primary treatment
 - Processes that remove a portion of the suspended solids and organic material
- Typically provided by septic tanks and grease traps in decentralized systems
 - Conventional screening and grit/grease removal may be provided when extended aeration treatment plants are used for pretreatment

Septic Tank Functions

- Treatment
 - Solids removal (60-80%)
 - BOD removal (50-60%)
 - O&G removal (up to 80%)
 - Limited removal of nutrients, pathogens, metals, etc.
- Storage and digestion of solids/scum
- Riser Ground surface depth may vary, but not exceed 12 inches unless a riser is installed on each cleanout and extends to within 6 inches of total tank length of the ground surface. Inlet 12 inches clean out Tee fittina Outlet 3 inches Depth of Tee fitting 30 inches Tee fitting Alternate tee fitting (minimum) Sand/gravel cushion

- Flow modulation
- Conditioning of wastewater for further treatment
- Protection of drainfield/downstream components
- Advanced pretreatment system component (recirc)
- Resource recovery (nutrients, biogas)

Septic Tank Operational Model

- Mechanically simple, but functionally complex
- Organic molecules are converted into easily degradable sugars and acids (through hydrolysis) followed by further degradation by methane forming organisms
- Distinct layers of settled sludge, a clear zone and floating scum form
- Biogas bubbles rise from the sludge layer to seed the upper layers and disrupt settling

Septic Tank Design

- Sizing typically based on a 1-2 day HRT at design flow (max day)
- Design elements usually prescribed by state or local codes
 - Sizing requirements
 - Compartmentation (baffles)
 - Effluent screening devices
 - Usually standard designs, but engineered units may be used for larger or nontraditional applications

Septic Tank Capacity Calculation

- Use INSIDE dimensions of the tank
- Operating depth is measured from bottom to OUTLET
- Volume = length x width x depth (to the bottom of the outlet)
- Example
 - $-4' \times 7' \times [60" / 12] = 4' \times 7' \times 5' = 140 \text{ ft}^3$
 - 140 ft³ x 7.5 gal/ft³ = 1,050 gal
 - 1050 gal / 60 inches = 17.5 gallons per inch

Septic Tank Design Factors

Septic Tank Sizing

- Size has more of an impact on pumping frequency than settling
- Larger tanks have higher capital costs but require less frequent pumping and have lower operation and maintenance costs
- Larger tanks with less frequent pumping may take longer to reach biological maturity but are ultimately more efficient digesters

(Bounds, 1994)

Hydraulic Considerations	Design Elements
Surface loading rate	Surface area
Flow characteristics (short	Compartmentation (intercompartment transfer device)
circuiting)	Geometry
	Inlet design
Exit velocity	Outlet sizing
	Effluent hydraulic control

Septic Tank Design Factors

Geometry

- Shape not as important as L:W, SA and compartmentation
- Compartmentation restricts most digestion to the first compartment and mitigates interferences in the outlet zone
- Connection between compartments likely important, but studies inconclusive

Influent/Effluent Appurtenances

- Effluent screens and baffles help to prevent resuspended and neutral buoyancy solids from entering outlet devices
- Effects of specific devices difficult to isolate in experiments
- Minimal published data on effluent screens (there is an industry testing standard, NSF 46)

Alternative Septic Tank Designs

7.5"

from: Waterloo Biofilter (Jowett, 2006)

from: Seabloom, et al. (1982)

Grease Interceptors or Traps

- FOG removal from dedicated food service wastewaters
- Two types
 - Large interceptors provide relatively long HRT to cool water and float grease
 - Small undersink traps remove grease using other physical and hydraulic methods

Grease Interceptors or Traps

- Plumbed to only receive food service wastes
- Effluent from grease removal unit is directed to septic tank influent
- Little consensus on sizing and factors affecting performance
- Characteristics (including management and operating practices) of food service facilities are important
- Design elements may be prescribed by state or local codes
 - Sizing requirements
 - Compartmentation (baffles)
 - Effluent screening devices
 - Usually standard designs, but engineered units may be used for larger or nontraditional applications
- Need to be maintained!

Tank Materials

 Precast reinforced concrete

- One-piece vs. two-piece

Plastic

Built-in-place

Precast Concrete Tanks

Reinforcing

Concrete compressive strength

Honeycombing

Uneven joint

Reinforcing wire exposure

Tank Installation Provisions

Traffic loading

Anti-buoyancy

Excavation and bed prep

Risers

Pipe penetrations

Waterproofing

Grading/landscaping

Tank Testing

- Strength/structural integrity
- Watertightness

Standard	Hydrostatic test		
	Preparation	Pass/fail criterion	
C 1227, ASTM (1993)	Seal tank, fill with water, and let stand for 24 hours. Refill tank.	Approved if water level is held for 1 hour	
3	Seal tank , fill with water, and let stand for 8 to 10 hours. Refill tank and let stand for another 8 to 10 hours.	Approved if no further measurable water level drop occurs	

Vacuum Test

Preparation

NPCA (1998)

Seal tank and apply a vacuum of 2 in. Hg.

Seal tank and apply a vaccum of 4 in. Hg. Hold vacuum for 5 minutes. Bring vacuum back to 4 in. Hg.

Pass/fail criterion

Approved if 90% of vacuum is held for 2 minutes.

Approved if vacuum can be held for 5 minutes without a loss of vacuum.

More Information

Septic Tanks

- CIDWT Practitioner Curriculum
 - http://www.onsiteconsortium.org/Ed_curriculum.html
- D'Amato (2008) Factors Affecting the Performance of Primary Treatment in Decentralized Wastewater Systems
 - http://www.ndwrcdp.org/research_project_04-DEC-7.asp

•

Grease Interceptors or Traps

- International Association of Plumbing& Mechanical Officials (IAMPO) Uniform Plumbing Code (UPC)
 - www.iapmo.org
- Ducoste (2008) Assessment of Grease Interceptor Performance
 - http://www.ndwrcdp.org/research_project_03-CTS-16T.asp

Soil-Based Treatment

Soil Treatment Unit

- Treatment via filtration
 - Physical
 - Chemical
 - Biological
- Dispersal into environment
 - Recharge aquifer
 - Restore hydrology

Precipitation

Evapotranspiration

Septic System

Soil Treatment Unit

- Soil characterization
 - Color (wetness, parent mat'l, organics)
 - Texture (sand, silt, clay)
 - Structure
 - Mineralogy and Consistence
- Soil horizons
 - O = organic layer
 - -A = topsoil
 - (E = mineral)
 - B = subsoil
 - C = substratum
- Restrictive horizons
 - Unpermeable clay
 - Bedrock
 - Groundwater table

Soil Treatment Unit

- Landscape position
- Advanced analyses
 - Pits
 - Deep borings
 - Soil wetness/monitoring
 - Saturated hydraulic conductivity measurement (Ksat)
 - Hydrogeologic evaluation (mounding, lateral flow)
- Match system to the site!

Soil Treatment Unit - Siting

- Allowable (long term) application rate: aerial vs. trench interface basis
 - Soil characteristics
 - Effluent characteristics
 - Dispersal type
- Setback distances (property lines, surface waters, wells, etc.)
 - Soil characteristics
 - Effluent characteristics
 - Dispersal type
- Dispersal depth
- Repair/replacement area allowance
- Flow rate

- Example
 - LTAR = 0.4 gpd/sf (aerial basis)
 - Design flow = 3,000 gpd
 - Required drainfield area = 3,000 gpd ÷ 0.4 gpd/sf = 7,500 sf
 - Also, need to account for
 - Repair area
 - Setback distances

- (a) Every sanitary sewage treatment and disposal system shall be located at least the minimum horizontal distance from the following:
 - (1) Any private water supply source, including any well or spring
 - (2) Any public water supply source
 - (3) Streams classified as WS-I
 - (4) Waters classified as S.A.

(5) Other coastal waters

100 feet; 100 feet; 100 feet fro

100 feet, from mean high water mark;

50 feet, from

Soil Treatment Unit

Objectives

- Aerobic treatment (alternating saturated/unsaturated conditions)
- Improved treatment by dosing entire drainfield area with relatively small, frequent doses

Dispersal system architecture

- Conventional gravel-filled trench
- Chamber/gravelless
- Direct dispersal (drip, spray)
- Bed
- Considerations
 - Regulatory
 - Application depth
 - Footprint/size
 - Layout options

Distribution Design for Soil Treatment

Distribution System Options

- Gravity/serial distribution
- Gravity/parallel distribution (distribution box)
- Siphon or pump-dosed to gravity-flow drainfield
- Siphon or pump-dosed flow splitter (pressure manifold)

Distribution System Design

 Orifice Equation (for flowsplitting manifold)

$$Q = 13d^2h^{0.5}$$

- Where
 - Q=flow per orifice (gpm)
 - d=diameter of orifice (inches)
 - h=pressure head (feet)
 - For low pressure systems, use 11.79 instead of 13

Flow Splitting Manifolds

- aka, Pressure Manifold
- Used to split flow to gravity distribution lines
- Can use different orifice or tap sizes to achieve different flow rates for lines of different lengths
- Can vary operating pressure head to achieve different flow rates as desired
- Make sure manifold diameter is sufficient to handle flow (see http://www.deh.enr.state.nc.us/osww new/new1/aidsmainten.htm for resources)

			A. Sch 40 ta	aps.						B. Sch 80 tap	os.		
			Holes Siz	re						Hole Size			
Head (ft)	½ -inch (.622)	3/4-inch (.824)	1-inch (1.049)	1-1/4 inch (1.38)	1-1/2 inch (1.61)	2-inch (2.067)	Head (ft)	½ -inch (.546)	3/4-inch (.742)	1-inch (.957)	1-1/4 inch (1.278)	1-1/2 inch (1.50)	2-inch (1.939)
1.5	6.16	10.8	17.5	30.3	41.3	68.0	1.5	4.75	8.77	14.6	26.0	35.8	59.9
2	7.11	12.5	20.2	35.0	47.7	78.5	2	5.48	10.1	16.8	30.0	41.4	69.1
2.5	7.95	14.0	22.6	39.1	53.3	87.8	2.5	6.13	11.3	18.8	33.6	46.2	77.3
3	8.71	15.3	24.8	42.9	58.4	96.2	3	6.71	12.4	20.6	36.8	50.7	84.7
3.5	9.41	16.5	26.8	46.3	63.0	104	3.5	7.25	13.4	22.3	39.7	54.7	91.4
4	10.1	17.7	28.6	49.5	67.4	111	4	7.75	14.3	23.8	42.5	58.5	97.8

Manifolds for Sloping Site

Plan View

Profile View

Manifolds for Sloping Site

GRAVEL DRAIN DISCHARGE

UNDERNEATH

NOTE: BOX AND LIDS MUST BE PRE-APPROVED BY THE ENGINEER

AND BLOCKS

Pressure Manifold Design

Example

- Drainfield has three 80' lines and three 60' lines
- Design a pressure manifold to load each line equally

Solution

- Flow to 60' lines will need to be ~ (60/80, or 75%) the flow to 80' lines
- Select a 2' pressure head to start and look for appropriate tap sizes
 - 3/4" SCH 40 = 12.5 gpm
 - 1" SCH 80 = 16.8 gpm
 - 12.5/16.8 = 74.4%
- Pumping rate = 3(12.5) +
 3(16.8) = 88 gpm

			A. Sch 40 ta	aps.		
			Holes Siz	ze		
Head (ft)	½ -inch (.622)	3/4-inch (.824)	1-inch (1.049)	1-1/4 inch (1.38)	1-1/2 inch (1.61)	2-inch (2.067)
1.5	6.16	10.8	17.5	30.3	41.3	68.0
2	7.11	12.5	20.2	35.0	47.7	78.5
2.5	7.95	14.0	22.6	39.1	53.3	87.8
3	8.71	15.3	24.8	42.9	58.4	96.2
3.5	9.41	16.5	26.8	46.3	63.0	104
4	10.1	17.7	28.6	49.5	67.4	111

B. Sch 80 taps.

			Hole Siz	e		
Head (ft)	½ -inch (.546)	3/4-inch (.742)	1-inch (.957)	1-1/4 inch (1.278)	1-1/2 inch (1.50)	2-inch (1.939)
1.5	4.75	8.77	14.6	26.0	35.8	59.9
2	5.48	10.1	16.8	30.0	41.4	69.1
2.5	6.13	11.3	18.8	33.6	46.2	77.3
3	6.71	12.4	20.6	36.8	50.7	84.7
3.5	7.25	13.4	22.3	39.7	54.7	91.4
4	7.75	14.3	23.8	42.5	58.5	97.8

Low Pressure Distribution

- aka, Low Pressure Pipe (LPP)
- Used to distribute effluent evenly over an area
- Vary orifice size and spacing, and operating pressure head to achieve different short term loading rates
 - Orifice size = 1/8 3/16" typ.
 - Orifice spacing = 1-15', depending on the application
 - Pressure head = 2-5' typ.
 - Line spacing = 2-10'
- On sloping sites, may need to compensate for varying pressure head and "drainback" to lower laterals
- Individual trenches and lines need to be installed level to prevent localized overloading

Low Pressure Distribution

Low Pressure Design

			<u>Drilled Hole Diameter</u> (inches)				
Pressu: (feet)	re Head (PSI)	3/32*	1/8** I	5/32 Flow Rate (gal	3/16 lons per min	7/32 nute)	1/4
1	0.43	0.10	0.18	0.29	0.42	0.56	0.74
2	0.87	0.15	0.26	0.41	0.59	0.80	1.04
3	1.30	0.18	0.32	0.50	0.72	0.98	1.28
4	1.73	0.21	0.37	0.58	0.83	1.13	1.48
5	2.16	0.23	0.41	0.64	0.93	1.26	1.65
6	2.60	0.25	0.45	0.70	1.02	1.38	1.81

 $Q = 11.79d^2h^{0.5}$

Low Pressure System Design

Example

- Drainfield has four 60' lines on a sloping site
- Design an LPD system to load each line equally

- Line 1 (top) = 105' elev
- Line 2 = 104'
- Line 3 = 103'
- Line 4 (bottom) = 102'

Solution

- Top line will have lowest pressure, design for min. 2' PH
- Line 2 = 3', Line 3 = 4', Line 4 = 5' PH
- Use a 5' spacing of 5/32" holes on Line 1
- Line 1 will have 12 holes (60'/5') and be loaded at 0.41/hole = 4.92 gpm
- Using 5/32" holes, Line 2 will have an orifice flow of 0.50 gpm
- 4.92 gpm/0.5 gpm = 10 holes
- 60' line/10 holes = 6' hole spacing
- And so on for the other lines...
- Can also vary hole size or add separatelyvalved subfields or zones
- Also need to consider <u>manifold pipe size</u>, <u>lateral size</u>, and <u>dose volume</u>

Line	Elev.	PH	Q/hole	# holes	Hole space	Q/line
1	105'	2'	0.41	12	5.0'	4.92
2	104'	3'	0.50	10	6.0'	5.00
3	103'	4'	0.58	8	7.5'	4.64
4	102'	5'	0.64	7	8.5'	4.48

Drip/Spray Irrigation

- Used to distribute effluent evenly over an area, at surface or shallow burial depths that intercept root zone
- Variety of emitter types (or spray patterns), flowrates, spacing to accommodate different applications
- Many systems have distribution devices (emitters, spray heads) that provide consistent flowrates across a range of operating pressures
- Dead level placement not as critical
- Simplified and flexible installation methods
- Typically requires pretreated effluent

Spray Irrigation

Drip Irrigation

Drip Irrigation

53

Upcoming Webinar Sessions

Date	Topics (All @ 12 noon EST)	Presenter		
November 8	Overview of Centralized and Decentralized Treatment	Barry Tonning		
November 15	Decentralized Treatment: Processes & Technologies	Jim Kreissl		
November 22	Focus on Wastewater System Design: Part 1	Vic D'Amato		
November 29	Focus on Wastewater System Design: Part 2	Vic D'Amato		
December 7	Management Approaches for Wastewater Systems	Juli Beth Hinds & Khalid Alvi		
December 14	Integrated Water Resource Management	Vic D'Amato		